

1. 产品介绍

JSM502 是一款基于 BCDMOS 技术设计的霍尔开关芯片。传感器包括温度补偿、比较器和输出驱动器。该芯片为 3 线电压输出。比较器将实际磁通量与固定参考值(切换点)进行比较。 在三线版本中输出晶体管导通或截止。有源失调补偿可在电源电压和温度范围内产生恒定的磁特性。此外,机械应力对磁性参数对影响很小。

该芯片传感器适用于工业环境和汽车应用,环境温度范围为-40℃至 150℃,电源电压范围为 2.7-30V。JSM502 有两种封装形式: T092S 和 S0T23-3L,且封装均符合 RoHS 标准。

2. 特征

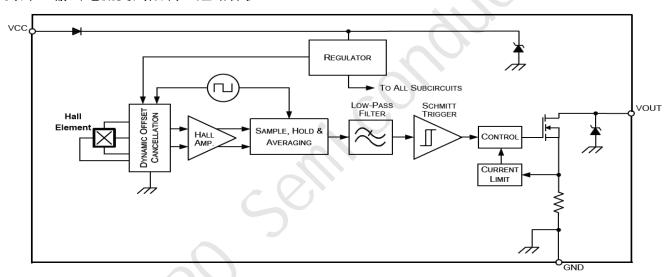
- 封装: S0T23-3L 和 T092S
- 低功耗: 2.5mA
- 工作电压: 2.7 V 到 30 V
- 防静电高达±12KV
- 三线应用短路保护,开漏输出和过温保护
- 有较强的抗机械应力特性
- 在宽的电压和温度范围内具有恒定开关点
- 温度范围: -40℃到 150℃
- 温度升高引起的磁通密度的降低可由内置负温度系数来补偿
- 电源引脚具有反向电压保护
- 适用于汽车和工业
- 符合 AEC-Q100 汽车电子行业测试标准

3. 应用

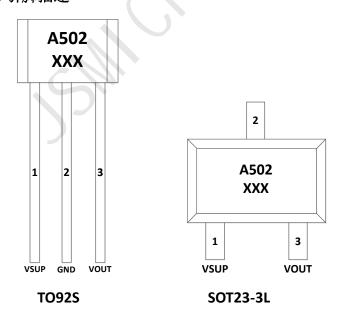
- 速度和 RPM 传感器
- 转速表传感器
- 流量传感器
- 直流电动机
- 电机和风扇控制
- 机器人控制
- 近距离传感器

- 位置传感器
- 安全扣带
- 引擎盖/后备箱门锁
- 天窗/活顶/后挡板/提升门启动
- 刹车/离合器踏板
- 电动助力转向系统(EPS)
- 变速器换挡

● 刮水器电机


4. 功能框图

该传感器是一种单片集成电路。如果将垂直于敏感区域的磁通线的磁场施加到传感器上, 偏置使霍尔电压与磁场成正比。


霍尔电压与比较器中的实际阈值电平进行比较。如果磁场超过阈值水平,则输出开关到适当的状态。内置的回差消除了振荡,并提供了锁存的输出开关状态。

通过使用斩波补偿技术可以补偿由机械应力引起的偏移。内置反向电压保护,无需电源线上的串联电阻或二极管。

在以下任何一种故障情况下,漏极开路输出都被强制进入安全的高阻抗状态:过热和欠压。另外,输出电流受到限制(短路保护)。

5. 引脚描述

6. 订购信息

编号	封装	包装	工作环境,TA
JSM502UA	T092S	1000 /袋	-40°C to 150°C
JSM502SU	S0T23-3L	3000 /卷	-40℃ to 150℃

7. 引脚信息

S0T23-3L 引脚号	T092S 引脚号	名称	功能
1	1	VSUP	供电电压 2.7V 至 30V
2	2	GND	地线
3	3	VOUT	需接上拉电阻

8. 绝对最大值

绝对最大额定值是应用芯片时的极限值,超过该值可能会损坏芯片。尽管在超过该值时芯片的功能不一定受到损害,但是如果在一定时间内超过该值,则芯片的可靠性可能会受到影响。

符号	参数	引脚号	最小值	最大值	单位	条件	
			-20	30	V	t < 1000 h 1)	
v_{CC}	电源电压	1		34	V	t < 96 h ¹⁾	
				36	V	t < 5 min ¹⁾	
)	-0.5	30	V	t < 1000 h ¹⁾	
V _{OUT}	输出电压	3		34	V	t < 96 h ¹⁾	
	CK			36	V	t < 5 min ¹⁾	
10	输出电流	3		65	mA		
IOR	反向输出电 流	3	50		mA		
TA	操作环境温 度		-40	150	$^{\circ}$	t < 96 h ¹⁾	
1) 无累积应力							

9. 推荐操作条件

当该芯片的功能运行超出本规范"建议的运行条件"中所述的范围,可能会导致芯片工作 异常,并可能降低可靠性和使用寿命。

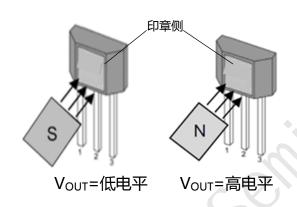
符号	参数	引脚号	最小值	值	最大值	单位
v_{CC}	电源电压	1	2. 7		3 0	V
TA	操作环境温度		-40		150	${\mathbb C}$
V _{OUT}	输出电压	3			3 0	V
IOUT	输出电流	3			25	mA

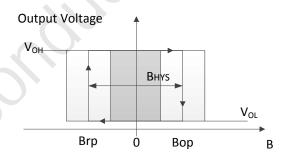
10.参数

测试条件, VCC=3.0V 至 24V, Ta= -40℃至 150℃。

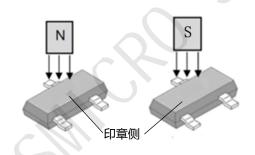
符号	参数	引脚号	最小 值	典型值	最大值	单位	条件
电源 VCC	电源 VCC=12V						
I_{cc}	供电电流	1		2. 5	3. 2	mA	3-线
I_{ccR}	反向电流				1	mA	$V_{CC} = -18 \text{ V}$
输出							
V _{o1}	端口低输出电压	3	(S),	0. 13	0.4	V	$I_0 = 20 \text{ mA}$
,01	河口 医制田 七座	5)		0.5	V	$I_0 = 25 \text{ mA}$
t_{f}	输出下降时间				1	μ_{S}	R _L =82 Ω
t_r	输出上升时间				1	$\mu_{ m S}$	C _L = 20 pF
B _{nois} e	磁开关点 的有效噪声			0. 1		mT	适用于1 kHz 的 方波信号
tj	输出抖动				0 . 5	μ_{S}	适用于 1 kHz 的 方波信号
t _d	延迟时间			16		μ_{S}	
tsamp	输出		1.6	2	2. 6 6	μ_{S}	

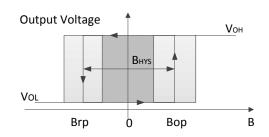
11. 磁特性概述


推荐使用条件, VCC=3.0V 至 24V, Ta= -40℃至 150℃。



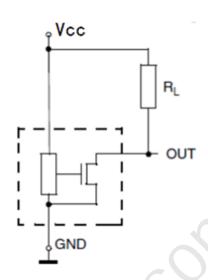
温度		温度系数	工作点 [mT]		释放点[mT]			回差[mT]			
传感器	切换类型	TC [ppm/K]	最小 值	典型值	最大值	最小 值	典型值	最大值	最小 值	典型值	最 大 值
JSM502	双极	-1000		2.5			-2. 5			5. 0	


12. 磁电转换特性

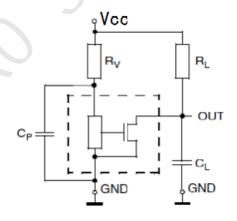

在T092S封装的印章侧施加大于Bop的磁场(南极靠近),输出变为低电平;施加小于Brp的磁场(北极靠近),输出变为高电平。芯片初次上电时,如果磁场处于Bop和Brp之间,输出状态会处于未定义的状态(高电平或低电平)。S0T23-3L封装的工作点与释放点的磁场极性与T092S相反。见下图。

TO92S输出状态

Vout=低电平 Vout=高电平


SOT23-3L输出状态

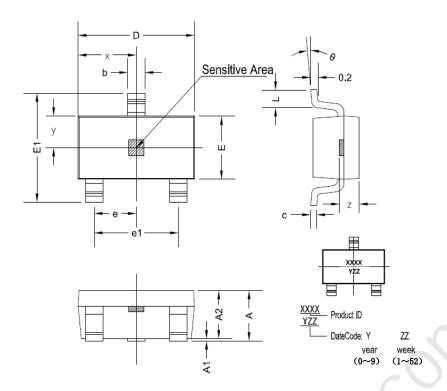
13. 应用电路


13.1 典型应用电路 1

典型应用电路(见下图) RL =4700 Ω

典型应用电路1

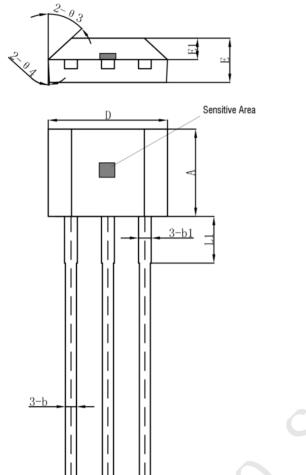
13.2 典型应用电路 2

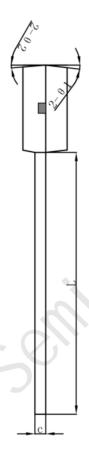


典型应用电路 2

对于电源线上有干扰或辐射干扰的应用,建议串联一个电阻 RV 以及两个电容 CP 和 CL 都放置在传感器附近。例如: RV=100 欧姆, CP=4.7 nF, CL=1 nF。

SOT23


S0T23-3L 尺寸


符号	尺寸(毫米)	尺寸(英寸)
	最小	最大	最小	最大
A	1.05	1. 25	0.041	0. 049
A1	0	0. 1	0	0.004
A2	1.05	1. 15	0. 041	0. 045
b	0.3	0.5	0. 012	0. 02
С	0. 100	0. 2	0.004	0.008
D	2.82	3. 02	0. 111	0. 119
Е	1.5	1. 7	0. 059	0.067
E1	2.65	2. 95	0. 104	0. 116
е	0. 950) TYP	0.037 TYP	
e1	1.8	2	0.071	0. 079
L	0.3	0.6	0.012	0. 024
X	1. 46	1. 460TYP		7TYP
У	0. 800TYP		0. 032TYP	
Z	0. 600TYP		0. 024TYP	
θ	0°	8°	0°	8°

封装尺寸

TO92S 封装尺寸

	机械尺寸/mm						
符号	最小	典型	最大				
Α	2.90	3.00	3.10				
b	0.35	0.39	0.40				
b1		0.44					
С	0.36	0.38	0.40				
D	4.00	4.10	4.20				
E	1.42	1.52	1.62				
E1		0.75					
е		1.27					
e1		1.27					
L		2.54					
L1	13.50	14.50	15.50				
θ1		6°					
θ2		3°					
θ3		45°					
θ4		3°					
h		3.6					